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Received 20 November 1978, in final form 12 December 1978 

Abstract. The mapping of the critical points in the q-state model for q =s 4 onto the Baxter 
line in the eight-vertex model makes it possible, by a comparison of the exactly known 
critical exponent y y  with the approximately known values for y;, to conjecture the relation 
(y? -2)(y;-3)=3. This relation confirms weak universality. 

1. Introduction 

In this paper a relation between the critical exponents for the temperature operator of 
the eight-vertex model and the q-state Potts model (for q S 4) is proposed: 

This relation can be rewritten, using the Baxter solution, as an explicit equation for y;: 

Y%) =;P+.rrl(Cc-dl f O r q 6 4  withcosp=$& (1.2) 

(the specific heat exponent is related to YT as CY = 2-2/yT).  
The q-state Potts model, eight-vertex model and Ashkin-Teller model have in 

common (see 8 2 )  that their critical lines can all be mapped on the T > T, domain of the 
F model (solved by Lieb (1967)). The temperature operators of the three models 
correspond to three different directions in which one can leave the F model. In other 
words, one can construct a parameter space in which the three models intersect each 
other at their critical line; along this line (the Baxter line) the three models reduce to the 
F model. The identification of the fields is summarised in table 1. 

These equivalences were already implicitly known in the literature; no new map- 
pings are needed to show them. A combined presentation however, as given in § 2, with 
the F model as central model cannot be found in the literature. 

A comparison in 8 3 of the critical exponent y; of the q-state Potts model, as 
obtained by recent approximative calculations, with the exactly known y? (Baxter 
1971) lead then to the conjecture that these two exponents satisfy a simple relation 
along the Baxter line (i.e. for q s 4). 

Equation (1.1) is similar to relations between other critical exponents along the 
Baxter line that have been conjectured before (see 6 3). Just like these other relations, 
equation (1.1) does not contain the parameter of the Baxter line explicitly. It confirms 
the concept of weak universality. 

0305-4470/79/101857 + 12$01.00 0 1 9 7 9  The Institute of Physics 1857 
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Table 1. Operators for the F model. 

(a eu, a e', a e-", a eKu; e*, e-'; d, d )  
a e-", a e", a e'; e-', e', d, d )  

Asublattice 
B sublattice (wit 0 2 1  0 3 9  0 4 ;  u5r  061 0 7 3  0 8 )  = 

Field Interpretation at U = s = d = 0 Behaviour of the free energy 

U Temperature in F model Infinite-order transition at a =$ (Lieb 1967) 

S 

d 

U 

Staggered electric field 

Temperature in eight-vertex 
model 

(staggered polarisation of F model) 

~ > t : f - / d l * ' ~ P ,  y:=2g/w (Baxter 1971) 
a <$: regular, cos cc = 1/2a2-  I 

a >*: f - l U / 2 / y + T  I a < 4: regular Temperature in AT model 

s = ( i /2 )  tan ( g/2)tp 
a <*: first-order (Baxter 1973b) Temperature in Potts model 

U =iep 

2. Relations between the eight-vertex, Ashkin-Teller and Potts models 

In this section it is discussed how the eight-vertex model, the Ashkin-Teller model and 
the q-state Potts models are successively related to the F model. The definition and 
interpretation of the several fields are summarised in table 1. All mappings used in this 
section are already known, but appear rather scattered in the literature. This section 
serves as a review of these mappings in a presentation that has the F model as central 
model. 

2.1. The eight-vertex model 

The eight-vertex model has been introduced as a model for (anti)ferroelectrics. Draw 
arrows on the edges of a two-dimensional square lattice, with the restriction that an 
even number of arrows point into every vertex. Attach to each of the allowed vertex 
states (see figure 1) a Boltzmann weight wi. The symmetric eight-vertex model, solved 
by Baxter (19711, is obtained when 01 = 0 2  = a, w3 = w4 = b, w5 = 0 6  = c and W-I =os = 
d. 

wl w 2  '3 wL W S  w6 w7 w0 

de"' eS-' ce-s f I de-s - f 
beh-V be-h*V A :  

B: Sublottie aeh+v adh-" ce-s't ces-' 

F¶g. 1. The eight different vertex configurations and their Doltzmann weights. 

For a >> b, c, d and for b >> a, c, d the arrows will order ferroelectrically, while for 
c >>a, b, d and d >> a, b, c an antiferroelectric groundstate is obtained. Notice that in 
each of these four limits the arrows are allowed to order in two groundstates (two 
coexisting phases). So in the eight-vertex model, two natural order parameters play a 
role: the polarisation and the staggered polarisation. Conjugate to these two order 



Eight-vertex and q-state Potts model 1859 

parameters are respectively the direct electric fields h and D (figure 1 )  and the staggered 
fields s and t (for the definition of a staggered field, divide the lattice in the usual way 
into two sublattices A and B). In the Ising translation of the eight-vertex model (Wu 
197 1 ,  Kadanoff and Weger 1971) another order parameter emerges: the magnetisation 
(to which the magnetic field isconjugated). The electrical fields are translated there into 
the nearest-neighbour interactions. 

Baxter (1971) gives the solution of the symmetrical eight-vertex model in the 
so-called principal domain: 

a>O, b > O ,  d > O ,  c > a + b + d .  (2.1) 

The free energy shows a singularity at the c = a + b + d border only. The critical 
exponent varies continuously in this plane: 

f - IT - TC1*/Y? (2.2a) 
Y = 2F/% COS p =  (ab -cd)/(ab +cd) .  (2.26) 

The solution in the rest of the (a, b , c , d )  space can now be constructed from the 
symmetry relations given by Fan and Wu (1970): 

Z(a,  b ;  c, d )  

= Z(U, b ;  C, 4) ( 2 . 3 ~ )  
= Z ( b ,  a ;  C, d )  (2.36) 

=Z(C, d ;  U ,  b )  ( 2 . 3 ~ )  

=Z($(a - b + C  + d ) ,  $(-a + b +C + d ) ;  $(a + b + c - d ) ,  $(a t b - c  +d) ) .  

(2.3d) 
In figure 2 the result in the a = b, c = 1 plane is shown (the c = 1 choice is no restriction). 

a - b  

-2. The phase diagram of the eight-vertex model for c = 1 and U = b. 



1860 M P M den Nijs 

The full curves are critical curves corresponding to the Baxter line; the broken curves 
correspond to noncritical borders of the principal domain. The two shaded ‘triangles’ 
are mapped on each other by relation (2.34. 

For d = 0 (the Ice condition) and a = b, the eight-vertex model reduces to the F 
model (already solved by Lieb (1967)). He found an infinite order transition at a = 3 
(i.e. y ;  = 0). From figure 2 we conclude that the Baxter line in the principal domain is 
mapped on the T > T, domain of the F model?. 

Variation of the temperature in the F model corresponds to moving along the a = b 
line in the critical plane 1 = a + b + d of the eight-vertex model. 

Moreover, by solving the Ice models Lieb has automatically solved the eight-vertex 
model at the critical plane and the noncritical borders in the principal domain. The 
whole 1 = a + b + d plane is mapped by equation (2.3d) onto the d = 0 plane. From the 
solution of the Ice models as discussed by Lieb and Wu (1972), we learn that a transition 
in the Ice models is found when lines corresponding to the boundary of the critical 
domain in the 1 = a + b + d  plane (i.e. at a = 0, b = 0 or d = 0) are crossed. This 
transition is F-like (i.e. antiferroelectric; infinite order) when A = -1 (d  = 0) at the 
border and KDP-like (i.e. ferroelectric; first order) when A = +1 (a or b = 0). This 
variable A (introduced by Lieb) is related to the p variable (introduced by Baxter) as 

A = -COS p. (2.4) 
We return now to the F model. Below T, the staggered polarisation (the order 
parameter) shows a jump (Baxter 1973a). So for a <$ a first-order transition in the 
staggered field direction s is found. The F model shows long-range correlations, not 
only at T, but also for all T > T,. The staggered susceptibility is expected to diverge 
with a continuously varying exponent, i.e. the free energy is singular in the s direction as 

f - ISI*’YT. (2.5) 
This exponent is only known exactly at a = id?, where Baxter (1970) found the 

second derivative with respect to s to diverge logarithmically (y? = l), and at U = 3 
where y?  = 1.5 (Baxter 1973a). 

Finally, from the mapping of equation (2.3d) and the Baxter solution, it follows that 
along the F model for T > T, 

( 2 . 6 ~ )  

with 

YP =2cL/7T, cosp=1/2a2-1 (2.66) 

while for T < T, the free energy remains regular in the d direction (see table 1). 

2.2. The Ashkin-Teller model 

The Ashkin-Teller model has been introduced to describe a mixture of four 
components A, B, C and D (Ashkin and Teller 1943). 

Associate (Fan 1972) to every vertex i of the two-dimensional square lattice two 
Ising spins (si, t i ) .  Then the four different states of a vertex can be identified as 

t After completion of this work, the author received a preprint by Temperley and Ashley (1978) where this 
mapping of the Baxter line onto the F model, and the conclusion that the critical line in the Potts model is a 
Baxter line, is also established. 
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A = (+, +), B = (-, +), C = (+, -) and D = (-, -). The Hamiltonian is chosen as 

(2.7) 

This implies for two nearest-neighbour vertices, four different Boltzmann weights: 
WO = exp(K + J1+ Jz) for AA, BB, CC and DD, w1= exp(J1) for AB and CD, w2 = 
exp(J2) for AC and BD, w3 = 1 for AD and BC. 

Fan (1972) has derived a duality transformation for this model, which leaves the 
wo = w1 + w2 + w3 plane invariant. By a duality transformation on the ti spins only, 
however, the Ashkin-Teller (AT) model is mapped on another Ising model which is 
equivalent to a staggered eight-vertex model. The equations obtained by Wegner 
(1972) read (after an additional application of equation (2 .3~)  and a normalisation of 
C): 

A and B refer to the two sublattices (see above). One can introduce a staggered field U 

such that a A  = bB = a exp(u) and a B  = bA = a exp(-U), and 

When U = 0 the AT model reduces to the symmetrical eight-vertex model with 
a = b. From equations (2.8) we read that U = 0 corresponds to WO = W I  + w2 + w3, i.e. 
the plane in the AT model that is invariant under duality (Fan 1972). 

The intersection of this plane with the w1 = w2 = w3 line (i.e. J1= J2 = 0, the 
four-state Potts model) is mapped on the transition point a = f  in the F model. We 
conclude from figure 2 that the dual plane of the AT model must contain three Baxter 
lines that meet each other at this point. They are situated (Wu and Lin 1974) along 
w1 = w2 for w3 <$WO, w2 = w3 for w1< $wo and w1 = w3 for w2 < $wo. Furthermore, the 
temperature operator in the eight-vertex model corresponds in the AT model to the 
crossover operator in the wo = w1 + w2 + w3 plane. So within this plane the free energy 
becomes singular when the Baxter lines are crossed. This corresponds to phase 
transitions between the three types of partial de-mixing. In the w1 >> w2, w3 region of 
the plane an AB/CD mixture is obtained. A is mixed with B, and C with D, but there is 
no mixing between the two groups. In this region the order parameter (SI) # 0, while the 
two other natural order parameters of the AT model, ( t i )  and (siti) (Enting 1975a), 
remain zero (we will denote the conjugated fields by h,, h, and h,,, respectively). In the 
w2>> wl, w3 region one finds an AD/BC-mixture with only ( t i ) # O ,  and in the w3 >> 
wl, w2 region one finds an AD/BC-mixture with only (siti) # 0. 

Notice that the permutation symmetry between wl, w2 and w3 (obtained by a 
permutation of A, B, C and D) is the counterpart in the AT language of equations ( 2 . 3 ~ )  
and (2.3d). Furthermore, we see that this symmetry maps the three order parameters 
onto each other. Along J1 = J2 (wl = W Z ) ,  Enting (1975a) named (in analogy to the Ising 
version of the eight-vertex model) (siti) the polarisation and (s i )  = { t i )  the magnetisation. 
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Along Jz = 0 (w2 = wg) however, ( s i )  must be identified as the polarisation and 
( t i )  = (siti) as the magnetisation. 

Crossing the dual plane in the temperature direction (varying U), only a singularity 
in the free energy will be found at the Baxter lines. This is due to the fact that the AT 
model shows two phase transitions (Wu and Lin 1974). Departing from high tempera- 
tures one first finds a transition to one of the three partial de-mixed states (the 
corresponding order parameter, identified as the polarisation, no longer vanishes). 
After crossing the dual plane a second transition to total de-mixing takes place (the 
magnetisations also become nonzero). The two sheets of Ising-type critical points 
(Wu and Lin 1974, Knops 1975, Aharony 1977, Ashley 1978) are mapped on each 
other by the duality relation of Fan (1972) (or equivalently by inversion of U). 
They only intersect each other (in the wo = w1 + w2 + w 3  plane) at the Baxter lines, 
where the transition need no longer be of the king type, but is described by a continu- 
ously varying exponent yCT (a drawing of the full phase diagram is given by Wu and 
Lin 1974). 

We can conclude that via equations (2.8) the J2 = 0 AT model maps on a staggered F 
model. The temperature operator of the AT model corresponds to the operator U, i.e. a 
staggering in the a and b weights. For a > 4 one will find a continuous varying exponent 
yeT, while for a <$the free energy will remain regular with respect to U (see table 1). 
Furthermore the polarisation ( s i )  is expected to behave in a similar way to the staggered 
polarisation of the F model: along the Baxter line a continuous varying exponent y?' 
and for J1 > 0 (i.e. a < $) a first-order transition. The magnetisation (siti) = ( t i ) ,  on the 
other hand, remains zero along the whole duality line. One expects along the Baxter 
line a continuously varying exponent yk', and for J1 > 0 one expects the free energy to 
remain regular with respect to h, and hsz. 

2.3. The q-state Potts model 

The q-state Potts model, introduced by Potts (1952) can also be considered as a model 
to describe mixtures: a mixture of q components. On a two-dimensional lattice are 
situated spins that can take q different states ai = 1 , 2 , 3  . . . q. The Hamiltonian is 
chosen as 

(2.10) 

For q = 2 the model reduces to the Ising model, while in the limit q -P 1 one obtains 
the percolation model and in the limit q -* 0 (when taken in the appropriate way) a linear 
resistance network (Fortuin and Kasteleyn 1972). Notice that the AT model for 
J1 = J2 = 0 reduces to the four-state Potts model. Further, the three-state Potts model is 
of interest for adsorption experiments on graphite substrates (Berker et a1 1978). 

In the present form the model only makes sense for integer values of q. In the 
random cluster model presentation of Fortuin and Kasteleyn (1972), however, q 
can take all real values. Temperley and Lieb (1971) and Baxter eta1 (1976) showed 
this model to be equivalent to a staggered F model. The equations read (Baxter 
1973b) 

A sublattice 
B sublattice 

(2.10a) (a e', a e+", a e-u, a e-", e', e-') 
a e-', a e", a e", e-', e') 



Eight-vertex and q-state Potts model 1863 

with 
-2 a = 2(cosh 2u +cosh 8) 

2u =lnx  

2s = In[(l +x e e ) / ( x  +ee)] 

x = q  (e -1) 

(2.10b) 
-1/2 K 

cosh 8 = $q'l2. 

At its critical points x = 1 ( K J q )  = ln(1 +G) (Potts 1952)), the Potts model reduces to 
the F model. Again the critical point of the four-state Potts model maps on the a = 1 
point of the F model. All critical points for q C 4 are mapped onto the Baxter line. 

The temperature operator of the Potts model is a combination of the temperature 
operator of the AT model and the staggered field operator of the Fmodel. Notice that 8 
is purely imaginary for q d 4 and real for q > 4. From equations (2.10b) one finds that U 

is real for all q. The staggered field s, however, is only real for q > 4. For small ep = In x 
(i.e. close to the critical point), one finds: 

s -4  tanh(8/2)ep 

U ' Z E p .  
1 (2.1 1) 

So, close to the Baxter line (q  C 4) s becomes purely imaginary. 
For q >4 (the a <$ domain of the F model), the free energy shows a first-order 

transition with respect to s and remains regular in the U direction (see above). Because 
at x = 1, ep is a linear combination of U and s (both real), a first-order transition must 
also be found in the Potts model for q >4 (Baxter 1973b). 

Notice that five different parameters have been used to parametrise the Baxter line: 
a, A, p, 8 and q. They are related by 

-A = cos p = cosh 8 = = 1/2a2 - 1. (2.12) 

The parameter q can only be applied for a d &b. At a = f&(q = 0)  the eight-vertex 
model and the AT model both reduce to two decoupled king models. The staggered 
F-model is solvable here since the free-fermion condition is satisfied (see e.g. Wu and Lin 
1975). Not only the second derivatives of the free energy in the U and d directions 
diverge logarithmically. The second derivative with respect to the staggered field s also 
diverges as lnlsl (Baxter 1970) at this point on the Baxter line. In the Potts direction ep 
the free energy behaves as f- m(x);  i.e. y'T = 0. 

Another special point is the critical point in the four-state Potts model. At least four 
Baxter lines emerge from this multicritical point: three in the duality plane of the AT 
model (i.e. the a-b symmetrical eight-vertex model) and one in the q direction of the 
Potts model (both models are included in the so-called cubic model introduced by Kim 
et al 1976). A similar multicritical point is found in another model (Jose et a1 1977). 
This model can be described as an XY model (in fact a Villain model) with three 
parameters: the coupling K,  a magnetic field hg with cubic anisotropy and a parameter y 
controlling the number of vortices. This model is related to the Coulomb gas (Villain 
1975, Jose er a1 1977) and to the discrete Gaussian model (Knops 1977). 

It is tempting to believe also that this multicritical point is isomorphic to the 
four-state Potts critical point. The mapping of a modified version of the discrete 
Gaussian model on the F model given by van Beyeren (1977) gives some support for this 
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idea. Furthermore, Kadanoff (1977) in an heuristic way has conjectured this iso- 
morphism on the basis of a comparison of the expansions of some critical exponents 
around this multicritical point. 

3. Relations between critical exponents along the Baxter line 

One of the most intriguing aspects of the solution of the symmetrical eight-vertex model 
is the breakdown of universality. The critical exponent y?’ varies continuously along 
the Baxter line; y p  is not independent of the details of the interactions. Kadanoff and 
Wegner (1971) have shown the existence of a marginal operator along the Baxter line 
(at least to first-order around a = $&, where the eight-vertex and AT model reduce to 
two decoupled Ising models). In an exact renormalisation transformation one should 
therefore find (in order to obtain a proper description of the transition), not one fixed 
point attracting the whole critical domain, but a line of fixed points. Notice that in the 
eight-vertex and AT language this fixed point line will be difficult to obtain because of 
the approximations usually needed in the RT equations. In the Potts language, 
however, 4 is automatically preserved. Consequently, in the Potts presentation the 
variation of the critical exponents along the Baxter line is not unexpected. At integer 
values of q, the transition point has the nature of a q critical point (an endpoint of a line 
of 4 coexisting phases). 

Along a fixed point line the critical exponents for different operators are in principle 
allowed to change independently of each other. Along the Baxter line, however, this 
does not seem to be the case. Simple relations between several exponents are 
conjectured which are independent of F. The critical exponents are ‘weak universal’ 
(see e.g. the discussion given by Enting 1975b). 

For the magnetic and staggered field operator in the eight-vertex model, Barber and 
Baxter (1973) and Baxter and Kelland (1974) respectively have proposed the relations: 

(3.1) 

(3.2) 

(according to scaling: pi = (2 - y i ) / y T ) .  Furthermore, Enting (1975b) conjectured 
similar relations for the AT model: 

(3.3) 

(3.4) 

with y f T  the exponent for the operator conjugated to the polarisation in the AT model. 
Finally, Kadanoff (1977) has recently proposed the following relation between the 
temperature exponents of the eight-vertex and AT model 

(3.5) 

These relations are known to be correct up to first order (using the method first 
applied by Kadanoff and Wegner 1971) around a =$A, and agree with the exact 
results for the Ice models. They are conjectured to be exact along the whole Baxter 
line; this is confirmed by series expansion results. Notice that equations (3.3) and (3.4) 
are consistent with equation (3.5) at a = t ;  they lead in the four-state Potts point to the 
same yeT. The permutation symmetry between the wi (see § 2) leads in the four-state 
Potts model to yGT = y t T .  So from equations (3.3) and (3.4) Enting (1975a) has 

8v 15 
YH =a 

3 1 8v y:’ = Z f 4 Y T  

AT -U 

AT 3 1 AT 

YH - 8  

y s  ‘ Z + S y T  

(y?  -2)(y$T -2 )  = 1. 
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conjectured that y$= = f at the Potts point. From the Baxter solution we know that 
y? = 0 at this point. So equation (3 .5)  also leads to y?' =$ (Kadanoff 1977). 

Further it is noteworthy that equations (3.1) and (3 .3)  are actually the same. One 
can easily show that the magnetic field operator in the AT model and the eight-vertex 
model transform into each other. The mapping of the AT model onto a staggered 
eight-vertex model in equations (2 .8)  is obtained by a duality transformation on the ti 
spins only. The lattice with two Ising spins at every vertex (the AT model) is mapped to 
an Ising model with si spins and ti spins at the A and B sublattice respectively. The 
equivalence between the eight-vertex model and the king model leads then to 
equations (2.8).  

The si spins are unaffected. So the duality transformation can still be applied when 
extra interactions between the si spins only are present. The field h, leads to an Ising 
model with a magnetic field on the spins of the A sublattice. In the AT model for J1 = Jz, 
(si) is identified as the magnetisation. In the corresponding Ising model ( s i )  is the 
magnetisation of one sublattice. Along the Baxter line, the Hamiltonian of that king 
model is invariant under permutation of the two sublattices (only four-body coupling 
and an isotropic next-nearest neighbour interaction). So ( s i )  = ( t i )  and 

Table 2. Comparison between ya,', y$= and y ;  along the Baxter line. q is chosen as the 
parameter. The values for y$T are obtained by equation (3.5) and the values for y ;  are 
conjectures from Table 3. 

4 Ya,' Y $T YPT 

0 1 1 0 
2 t 

2 1 - 4 
1 z a 

1 3 

4 0 ; Y P' 

2 
3 3 

We now propose a relation, similar to equation ( 3 . 9 ,  between y? and y;. In table 2 
the Baxter line is parametrised by q. The exact known values for y? and the values for 
yGT conjectured via equation (3 .5)  are compared with the y ;  of the Potts model, as 
obtained by approximate calculations. The rational values for y ;  given in the fourth 
column can be conjectured from results of recent Monte Carlo calculations, adsorption 
experiments, series expansions and renormalisation transformations (see table 3) .  In 
particular, the Kadanoff lower-bound renormalisation transformation (RT) (Kadanoff 
1975, Dasgupta 1976, 1977, den Nijs 1979), suggests these values for y;. Notice that 
the values quoted for q = 2 (Ising) and q = 0 (spanning trees) are exact results. 

From the values in table 2 ,  we can propose the relations 

y ;  = 3(yGT - 1) ( 3 . 7 ~ )  

( y ; -3 ) ( y?  - 2 ) = 3 .  (3.76) 

Using Baxter's result ( y?  = 2p/7r) ,  an explicit equation for yF(q) can be obt:ined 

Y%) =%2+ ?rib - .rr)I (3.8) 
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Table 3. Values of y;  obtained by approximated calculations. 

9 & = 2 / ( 2 - a ) = l / v  Method 

1 0*77i0*06 Monte Carlo (Kirkpatrick 1976) 
0.746 
0.7496 
0.738 
0.7450 

Series expansion (Dunn er a1 1975) 
Series expansion (Domb and Pearse 1976) 
Renormalisation transform (Reynolds er a1 1978) 
Kadanoff lower-bound RT (Dasgupta 1976) 

2 1 ( I d  Exact (Onsager 1944) 
1.0009 Kadanoff lower-bound RT (Kadanoff 1975) 

3 1.1696 Series expansion (Zwanzig and Ramshaw 1977) 
1.219 Adsorption experiment (Bretz 1977) 
1.266 
1,2023 

Series expansion (de Neef and Enting 1977) 
Kadanoff lower-bound RT (Dasgupta 1977, Burkhardt er al 
1976) 

with 

COS p = fJ4. 

This function is drawn in figure 3. Notice that at q = 4 the derivative dy;/dq + 03. For 
small 4 equation (3.8) can be approximated by y; = 3/7&. This agrees with the result 
of Kunz and van Leeuwen (Kunz 1977). Using a Migdal approximation for small q, they 
found y; = 4. Equation (3.8) however disagrees with the recent conjecture of Klein er 
a1 (1978) for the critical exponent of the percolation model yF(1) = 2 In $/ln 3 = 0.738. 

9 

Figure 3. The critical exponent y ;  as function of 9. The full curve is obtained from equation 
(3.8) and the broken curve is obtained by the Kadanoff lower-bound method (for q < 3 the 
broken curve is not drawn because it practically coincides with the full curve). 
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The y F ( q )  obtained by the Kadanoff lowerbound RT shows an excellent cor- 
respondence with equation (3.8) up to q = 3. For q > 3 , however, the results of the RT 
disagree with equation (3.8) (see the broken curve in figure 3. For q < 3 the broken 
curve is not shown because it almost coincides with the drawn curve. The drawn curve 
shows a point of inflection at q = 2.7318). One of the features of all RTS constructed up 
to now for the Potts model (Aharony 1977, Dasgupta 1977, den Nijs 1979, Shenker 
et a1 1979) is that they are unable to describe the first-order transition for q > 4.  The 
transition is found to remain critical. The yF(q) curve remains smooth around q = 4 
(see figure 3)  and predicts yF(4) =$. This result of the RT at q = 4 based on a 
straightforward application of the variational method is questionable. Arguments can 
be given for another solution yielding yF(4) -3 (den Nijs 1979). 

In conclusion, we have seen in this paper that the critical line in the four-state Potts 
model (up to q = 4 )  can be mapped onto the Baxter line. Furthermore an explicit 
equation for the critical exponent yF(q) is proposed. Because this equation confirms 
weak universality and also gives a good fit for the yF obtained by approximate 
calculations, equation (3.8) is expected to be exact. 
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